Муниципальное бюджетное образовательное учреждение «Школа №153 имени Героя Советского Союза Авдеева М.В.» г.о. Самара

РАССМОТРЕНО

на заседании МО

Руководитель МО <u>Кол-1 Жолгосова</u> Т. В. 1

протокол № <u>/</u> от 3 августа 2020 г. СОГЛАСОВАНО 3ам. лиректора по VR

зам. директора по УВР МБОУ Школы №153 г.о.

Самара

_/Муравьева Е.А./

3 28 августа 2020 г.

УТВЕРЖДЕНО

Директор МБОУ Школы №153 г.о. Самара

имическузненова О.В./

приказ №3/2 от Завгуста 2020 г.

Рабочая программа по физике уровень образования среднее общее образование 10-11 классы (базовый уровень)

> Составитель(и): Шамгунова Г.А., учитель физики

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА (БАЗОВЫЙ УРОВЕНЬ)

Рабочая программа по физике составлена в соответствии с ФГОС СОО на основе следующих документов:

- Приказ Минобрнауки России от 17.05.2012 г. № 413 «Об утверждении Федерального государственного образовательного стандарт среднего общего образования
- 2. Основная общеобразовательная программ МБОУ Школы № 153 г.о. Самара
- Федеральный перечень учебников (приказ № 345 от 28.12.2018 г. Министерства просвещения РФ)
- 4. Программа Шаталиной А.В. Рабочие программы. Физика. 10-11 классы. М.: Просвещение, 2017. Предметная линия учебников серии «Классический курс» 10—11 классы.
- 5. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. (под ред. Парфентьевой Н.А.) Физика. 10 класс. Учебник для общеобразовательных организаций с приложением на электронном носителе. Базовый и углубленный уровни. М.: Просвещение, 2019.
- 6. Мякишев Г.Я., Буховцев Б.Б., Чаругин В. М. (под ред. Парфентьевой Н.А.) Физика. 11 класс. Учебник для общеобразовательных организаций с приложением на электронном носителе. Базовый и углубленный уровни. М.: Просвещение, 2019.

Рабочая программа конкретизирует содержание предметных тем образовательного стандарта и дает распределение учебных часов по разделам курса и включает в себя: пояснительную записку, планируемые результаты освоения учебного предмета, содержание учебного предмета, тематическое планирование учебного материала с указанием количества часов, отводимых на освоение каждой темы.

Рабочая программа рассчитана на 2 учебных часа в неделю на базовом уровне в 10 классе и 11 классе, что составляет 136 часов в год.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Личностные:

- умение управлять своей познавательной деятельностью;
- готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни;
- сознательное отношение к непрерывному образованию как условию успешной профессиональной и общественной деятельности;
- умение сотрудничать со сверстниками, детьми младшего возраста, взрослыми в образовательной, учебно-исследовательской, проектной и других видах деятельности;
- сформированность мировоззрения, соответствующего современному уровню развития науки; осознание значимости науки, владения достоверной информацией о передовых достижениях и открытиях мировой и отечественной науки;
- заинтересованность в научных знаниях об устройстве мира и общества; готовность к научно-техническому творчеству;
 - чувство гордости за российскую физическую науку, гуманизм;
 - положительное отношение к труду, целеустремленность;
- экологическая культура, бережное отношение к родной земле, природным богатствам России и мира, понимание ответственности за состояние природных ресурсов и разумное природопользование.

Метапредметные:

Регулятивные универсальные учебные действия:

- самостоятельно определять цели, ставить и формулировать собственные задачи в образовательной деятельности и жизненных ситуациях;
- оценивать ресурсы, в том числе время и другие нематериальные ресурсы, необходимые для достижения поставленной ранее цели;
- сопоставлять имеющиеся возможности и необходимые для достижения цели ресурсы;

- определять несколько путей достижения поставленной цели;
- задавать параметры и критерии, по которым можно определить, что цель достигнута;
- сопоставлять полученный результат деятельности с поставленной заранее целью;
- оценивать последствия достижения поставленной цели в деятельности, собственной жизни и жизни окружающих людей.

Познавательные универсальные учебные действия:

- критически оценивать и интерпретировать информацию с разных позиций;
- распознавать и фиксировать противоречия в информационных источниках;
- использовать различные модельно-схематические средства для представления выявленных в информационных источниках противоречий;
- осуществлять развернутый информационный поиск и ставить на его основе новые (учебные и познавательные) задачи;
- искать и находить обобщённые способы решения задач;
- приводить критические аргументы, как в отношении собственного суждения, так и в отношении действий и суждений другого человека;
- анализировать и преобразовывать проблемно-противоречивые ситуации;
- выходить за рамки учебного предмета и осуществлять целенаправленный поиск возможности широкого переноса средств и способов действия;
- выстраивать индивидуальную образовательную траекторию, учитывая ограничения со стороны других участников и ресурсные ограничения;
- менять и удерживать разные позиции в познавательной деятельности (быть учеником и учителем;
- формулировать образовательный запрос и выполнять консультативные функции самостоятельно; ставить проблему и работать над её решением;
- управлять совместной познавательной деятельностью и подчиняться).

Коммуникативные универсальные учебные действия:

• осуществлять деловую коммуникацию, как со сверстниками, так и со взрослыми (как внутри образовательной организации, так и за её пределами);

- при осуществлении групповой работы быть как руководителем, так и членом проектной команды в разных ролях (генератором идей, критиком, исполнителем, презентующим и т. д.);
- развернуто, логично и точно излагать свою точку зрения с использованием адекватных (устных и письменных) языковых средств;
- распознавать конфликтогенные ситуации и предотвращать конфликты до их активной фазы;
- согласовывать позиции членов команды в процессе работы над общим продуктом/решением;
- представлять публично результаты индивидуальной и групповой деятельности, как перед знакомой, так и перед незнакомой аудиторией;
- подбирать партнёров для деловой коммуникации, исходя из соображений результативности взаимодействия, а не личных симпатий;
- воспринимать критические замечания как ресурс собственного развития;
- точно и ёмко формулировать как критические, так и одобрительные замечания в адрес других людей в рамках деловой и образовательной коммуникации, избегая при этом личностных оценочных суждений.

Предметные результаты:

- сформированность представлений о закономерной связи и познаваемости явлений природы, об объективности научного знания; о роли и месте физики в современной научной картине мира; понимание роли физики в формировании кругозора и функциональной грамотности человека для решения практических задач;
- владение основополагающими физическими понятиями, закономерностями, законами и теориями; уверенное пользование физической терминологией и символикой;
- сформированность представлений о физической сущности явлений природы (механических, тепловых, электромагнитных и квантовых), видах материи (вещество и поле), движении как способе существования материи; усвоение основных идей механики, атомно-молекулярного учения о строении вещества,

- элементов электродинамики и квантовой физики; овладение понятийным аппаратом и символическим языком физики;
- владение основными методами научного познания, используемыми в физике: наблюдение, описание, измерение, эксперимент;
- уменияобрабатывать результаты измерений, обнаруживать зависимость между физическими величинами, объяснять полученные результаты и делать выводы;
- владение умениями выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов, проверять их экспериментальными средствами, формулируя цель исследования, владение умениями описывать и объяснять самостоятельно проведенные эксперименты, анализировать результаты полученной измерительной информации, определять достоверность полученного результата;
- сформированность умения решать простые физические задачи;
- сформированность умения применять полученные знания для объяснения условий протекания физических явлений в природе и для принятия практических решений в повседневной жизни;
- понимание физических основ и принципов действия (работы) машин и механизмов, средств передвижения и связи,бытовых приборов, промышленных технологических процессов, влияния их на окружающую среду; осознание возможных причин техногенных и экологических катастроф;
- сформированность собственной позиции по отношению к физической информации, получаемой из разных источников.

Выпускник на базовом уровне научится:

- демонстрировать на примерах роль и место физики в формировании современной научной картины мира, в развитии современной техники и технологий, в практической деятельности людей;
- демонстрировать на примерах взаимосвязь между физикой и другими естественными науками;
- устанавливать взаимосвязь естественно-научных явлений и применять основные физические модели для их описания и объяснения;

- использовать информацию физического содержания при решении учебных, практических, проектных и исследовательских задач, интегрируя информацию из различных источников и критически ее оценивая;
- различать и уметь использовать в учебно-исследовательской деятельности методы научного познания (наблюдение, описание, измерение, эксперимент, выдвижение гипотезы, моделирование и др.) и формы научного познания (факты, законы, теории), демонстрируя на примерах их роль и место в научном познании;
- проводить прямые и косвенные изменения физических величин, выбирая измерительные приборы с учетом необходимой точности измерений, планировать ход измерений, получать значение измеряемой величины и оценивать относительную погрешность по заданным формулам;
- проводить исследования зависимостей между физическими величинами:
 проводить измерения и определять на основе исследования значение параметров,
 характеризующих данную зависимость между величинами, и делать вывод с
 учетом погрешности измерений;
- использовать для описания характера протекания физических процессов физические величины и демонстрировать взаимосвязь между ними;
- использовать для описания характера протекания физических процессов физические законы с учетом границ их применимости;
- решать качественные задачи (в том числе и межпредметного характера): используя модели, физические величины и законы, выстраивать логически верную цепочку объяснения (доказательства) предложенного в задаче процесса (явления);
- решать расчетные задачи с явно заданной физической моделью: на основе анализа условия задачи выделять физическую модель, находить физические величины и законы, необходимые и достаточные для ее решения, проводить расчеты и проверять полученный результат;
- учитывать границы применения изученных физических моделей при решении физических и межпредметных задач;

- использовать информацию и применять знания о принципах работы и основных характеристиках изученных машин, приборов и других технических устройств для решения практических, учебно-исследовательских и проектных задач;
- использовать знания о физических объектах и процессах в повседневной жизни для обеспечения безопасности при обращении с приборами и техническими устройствами, для сохранения здоровья и соблюдения норм экологического поведения в окружающей среде, для принятия решений в повседневной жизни.

Выпускник на базовом уровне получит возможность научиться:

- понимать и объяснять целостность физической теории, различать границы ее применимости и место в ряду других физических теорий;
- владеть приемами построения теоретических доказательств, а также прогнозирования особенностей протекания физических явлений и процессов на основе полученных теоретических выводов и доказательств;
- характеризовать системную связь между основополагающими научными понятиями: пространство, время, материя (вещество, поле), движение, сила, энергия;
- выдвигать гипотезы на основе знания основополагающих физических закономерностей и законов;
- самостоятельно планировать и проводить физические эксперименты;
- характеризовать глобальные проблемы, стоящие перед человечеством: энергетические, сырьевые, экологические, и роль физики в решении этих проблем;
- решать практико-ориентированные качественные и расчетные физические задачи с выбором физической модели, используя несколько физических законов или формул, связывающих известные физические величины, в контексте межпредметных связей;
- объяснять принципы работы и характеристики изученных машин, приборов и технических устройств;
- объяснять условия применения физических моделей при решении физических задач, находить адекватную предложенной задаче физическую модель,

разрешать проблему, как на основе имеющихся знаний, так и при помощи методов оценки.

СОДЕРЖАНИЕ УЧЕБНОГО ПРЕДМЕТА

Физика и естественно-научный метод познания природы

Физика — фундаментальная наука о природе. Методы научного исследования физических явлений. Моделирование физических явлений и процессов. Физический закон — границы применимости. Физические теории и принцип соответствия. Роль и место физики в формировании современной научной картины мира, в практической деятельности людей. Физика и культура.

Механика

Границы применимости классической механики. Важнейшие кинематические характеристики – перемещение, скорость, ускорение. Основные модели тел и движений.

Взаимодействие тел. Законы Всемирного тяготения, Гука, сухого трения.

Инерциальная система отсчета. Законы механики Ньютона.

Импульс материальной точки и системы. Изменение и сохранение импульса. *Использование законов механики для объяснения движения небесных тел и для развития космических исследований*. Механическая энергия системы тел. Закон сохранения механической энергии. Работа силы.

Равновесие материальной точки и твердого тела. Условия равновесия. Момент силы. Равновесие жидкости и газа. Движение жидкостей и газов.

Молекулярная физика и термодинамика

Молекулярно-кинетическая теория (МКТ) строения вещества и ее экспериментальные доказательства. Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Модель идеального газа. Давление газа. Уравнение состояния идеального газа.

Уравнение Менделеева-Клапейрона.

Агрегатные состояния вещества. Взаимные превращения жидкостей и газов. Влажность воздуха. Модель строения жидкостей.Поверхностное натяжение. Кристаллические и аморфные тела.Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии. Первый закон термодинамики. Необратимость тепловых процессов. Принципы действия и КПД тепловых машин.

Электродинамика

Электрические заряды. Закон сохранения электрического заряда. Закон Кулона.

Электрическое поле. Напряженность и потенциал электростатического поля. Проводники, полупроводники и диэлектрики. Конденсатор.

Постоянный электрический ток. Электродвижущая сила. Закон Ома для полной цепи. Электрический ток в проводниках, электролитах, полупроводниках, газах и вакууме. *Сверхпроводимость*.

Магнитное поле. Вектор индукции магнитного поля. Действие магнитного поля на проводник с током и движущуюся заряженную частицу. Сила Ампера и сила Лоренца. Магнитные свойства вещества.

Явление электромагнитной индукции. Магнитный поток. Закон электромагнитной индукции. Электромагнитное поле. Явление самоиндукции. Индуктивность. Энергия электромагнитного поля.

Колебания и волны

Механические колебания и волны. Амплитуда, период, частота, фаза колебаний. Превращения энергии при колебаниях. *Вынужденные колебания*, *резонанс*.

Электромагнитные колебания. Колебательный контур. Свободные электромагнитные колебания. Переменный ток. Элементарная теория трансформатора. Производство, передача и потребление электрической энергии.

Поперечные и продольные волны. Энергия волны. *Интерференция и дифракция волн*. Звуковые волны.

Электромагнитные волны. Диапазоны электромагнитных излучений и их практическое применение.

Оптика

Геометрическая оптика. Скорость света. Законы отражения и преломления света. Формула тонкой линзы. Волновые свойства светаб дисперсия, интерференция, дифракция, поляризация..

Основы специальной теории относительности

Постулаты теории относительности и следствия из них. Инвариантность модуля скорости света в вакууме. Энергия покоя. Связь массы и энергии свободной частицы.

Квантовая физика. Физика атома и атомного ядра

Гипотеза М. Планка. Фотоэлектрический эффект. Фотон. Корпускулярноволновой дуализм. *Соотношение неопределенностей Гейзенберга*.

Планетарная модель атома. Объяснение линейчатого спектра водорода на основе квантовых постулатов Бора.

Состав и строение атомного ядра. Энергия связи атомных ядер. Виды радиоактивных превращений атомных ядер.

Закон радиоактивного распада. Ядерные реакции. Цепная реакция деления ядер.

Элементарные частицы. Фундаментальные взаимодействия.

Строение Вселенной

Современные представления о происхождении и эволюции Солнца и звезд. Классификация звезд. Звезды и источники их энергии.

Галактика. Представление о строении и эволюции Вселенной.

Перечень лабораторных работ.

Прямые измерения:

- измерение мгновенной скорости с использованием секундомера или компьютера с датчиками;
 - -измерение сил в механике;
 - -измерение температуры жидкостными и цифровыми термометрами;
 - -измерение термодинамических параметров газа;
 - –измерение ЭДС источника тока;
 - -определение периода обращения двойных звезд (печатные материалы).

Косвенные измерения:

- -измерение ускорения;
- -измерение ускорения свободного падения;
- -определение энергии и импульса по тормозному пути;
- -измерение внутреннего сопротивления источника тока;
- -определение показателя преломления среды;
- -измерение фокусного расстояния собирающей и рассеивающей линз;
- -определение длины световой волны;

- определение импульса и энергии частицы при движении вмагнитном поле (по фотографиям).

Наблюдение явлений:

- -наблюдение вынужденных колебаний и резонанса;
- -наблюдение диффузии;
- -наблюдение явления электромагнитной индукции;
- -наблюдение волновых свойств света: дифракция, интерференция, поляризация;
- -наблюдение спектров;
- -вечерние наблюдения звезд, Луны и планет в телескоп или бинокль.

Исследования:

- исследование равноускоренного движения с использованием электронного секундомера или компьютера с датчиками;
 - исследование движения тела, брошенного горизонтально;
 - исследование изопроцессов;
 - исследование остывания воды;
- исследование зависимости напряжения на полюсах источника тока от силы тока в цепи;
 - исследование зависимости силы тока через лампочку от напряжения на ней;
 - исследование явления электромагнитной индукции;
 - исследование зависимости угла преломления от угла падения;
- исследование зависимости расстояния от линзы до изображения от расстояния от линзы до предмета;
 - исследование спектра водорода;
 - исследование движения двойных звезд (по печатным материалам).

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

Тема	Количество часов
	По плану
Раздел 1. Физика и естественно-	1
научный метод познания	
Раздел 2. Механика	27
Раздел 3. Молекулярная физика и	19
термодинамика	
Раздел 4. Основы электродинамики	21
ИТОГО	68

ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ

11 КЛАСС

Тема	Количество часов
	По плану
Раздел 1. Основы электродинамики	10
(продолжение)	
Раздел 2. Колебания и волны	15
Раздел 3. Оптика	13
Раздел 4. Основы специальной теории	3
относительности	
Раздел 5. Квантовая физика	17
Раздел 6. Строение Вселенной	5
Раздел 7. Повторение	5
ИТОГО	68

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ

10 КЛАСС

Номер	Тема	Количество
урока		часов
		По плану
	Раздел 1: Физика и естественно-научный метод	1
	познания	
1.	Методы научного познания	1
	Раздел 2. Механика	27
	Кинематика	8
2.	Механическое движение. Система отсчёта.	1
3.	Равномерное движение тел. Скорость. Уравнение	1
	равномерного движения.	
4.	Графики равномерного движения. Решение задач.	1
5.	Скорость при неравномерном движении. Мгновенная	1
	скорость. Сложение скоростей.	
6.	Прямолинейное равноускоренное движение.	1
7.	Равномерное движение по окружности	1
8.	Решение задач по теме "Кинематика"	1
9.	Контрольная работа №1 "Кинематика"	1
	Динамика	4
10.	Основное утверждение механики. Сила. Масса.	1
	Единицы массы.	
11.	Первый закон Ньютона.	1
12.	Второй и третий законы Ньютона	1
13.	Принцип относительности Галилея.	1
	Силы в механике. Статика	5
14.	Сила тяжести и сила всемирного тяготения.	1
15.	Вес. Невесомость.	1

16.	Деформации и силы упругости. Закон Гука.	1
17.	Силы трения. Лабораторная работа №1 "Измерение	1
	коэффициента трения скольжения"	
18.	Условия равновесия тел	1
	Законы сохранения в механике	8
19.	Импульс тела. Закон сохранения импульса.	1
20.	Решение задач «Закон сохранения импульса»	1
21.	Механическая работа. Мощность	1
22.	Кинетическая энергия тела	1
23.	Работа силы тяжести и силы упругости.	1
24.	Потенциальная энергия. Закон сохранения энергии в	1
	механике.	
25.	Лабораторная работа №2 "Изучение закона	1
	сохранения механической энергии".	
26.	Контрольная работа №2 "Динамика. Законы	1
	сохранения в механике".	
	Основы гидромеханики	2
27.	Давление. Закон Паскаля. Равновесия жидкости	1
28.	Решение задач по теме "Гидромеханика"	1
	Раздел 3. Молекулярная физика и термодинамика	19
	Основы МКТ и газовые законы	7
29.	Основные положения молекулярно-кинетической	1
	теории. Молекулы. Движение и взаимодействие	
	молекул	
30.	Основное уравнение МКТ.	1
31.	Температура. Энергия теплового движения	1
	молекул.	
32.	Уравнение состояния идеального газа.	1
33.	Газовые законы.	1

34.	Лабораторная работа №3 "Экспериментальная	1
	проверка закона Гей-Люссака".	
35.	Контрольная работа №3 "Основы МКТ"	1
	Взаимные превращения жидкостей и газов.	4
	Твердые тела	
36.	Насыщенный пар. Давление насыщенного пара.	1
37.	Влажность воздуха	1
38.	Свойства жидкости. Поверхностное натяжение.	1
39.	Кристаллические и аморфные тела.	1
	Основы термодинамики	8
40.	Внутренняя энергия и способы её изменения	1
41.	Работа в термодинамике.	1
42.	Количество теплоты. Уравнение теплового баланса.	1
43.	Решение задач на уравнение теплового баланса.	1
44.	Первый закон термодинамики. Второй закон	1
	термодинамики.	
45.	Принцип действия и КПД тепловых двигателей.	1
46.	Решение задач по теме "Основы термодинамики".	1
47.	Контрольная работа №4 на тему "Основы	1
	термодинамики".	
	Раздел 4. Основы электродинамики	21
	Электростатика	8
48.	Закон сохранения заряда. Закон Кулона.	1
49.	Электрическое поле. Напряжённость электрического	1
	поля.	
50.	Поле точечного заряда, сферы. Принцип	1
	суперпозиции	
51.	Потенциальная энергия заряженного тела.	1
	Потенциал.	

52.	Связь между напряжённостью и разностью	1
	потенциалов.	
53.	Решение задач по теме "Потенциальная энергия.	1
	Разность потенциалов".	
54.	Электроёмкость. Конденсатор.	1
55.	Энергия заряженного конденсатора.	1
	Законы постоянного тока	8
56.	Электрический ток. Сила тока.	1
57.	Закон Ома для участка цепи. Сопротивление.	1
58.	Электрические цепи. Последовательное и	1
	параллельное соединение проводников.	
59.	Решение задач по теме "Закон Ома и соединение	1
	проводников."	
60.	Работа и мощность постоянного тока	1
61.	ЭДС. Закон Ома для полной цепи.	1
62.	Лабораторная работа №4 "Измерение ЭДС и	1
	внутреннего сопротивления источника тока".	
63.	Контрольная работа №5 "Законы постоянного	1
	тока".	
	Электрический ток в различных средах	5
64.	Электрическая проводимость различных веществ.	1
	Проводимость металлов.	
65.	Электрический ток в полупроводниках.	1
66.	Электрический ток в вакууме. Электронно-	1
	лучевая трубка.	
67.	Электрический ток в жидкостях. Закон электролиза.	1
68.	Электрический ток в газах. Несамостоятельный и	1
	самостоятельный разряды.	
	I .	

ПОУРОЧНОЕ ПЛАНИРОВАНИЕ 11 КЛАСС

Номер урока	Тема урока	Количество часов по плану
	Раздел 1. Основы электродинамики	10
	(продолжение)	_,
	Магнитное поле	5
1.	Магнитное поле. Индукция магнитногополя. Вектор	1
1.	магнитной индукции.	1
2.	Действие магнитного поля на проводник с током и	1
2.	движущуюся заряженную частицу	•
3.	Сила Ампера. Сила Лоренца. Правило левой руки.	1
4.	Магнитные свойства вещества.	1
5.	Лабораторная работа №1 «Измерение силы	1
	взаимодействия катушки с током и магнита»	
	Электромагнитная индукция	5
6.	Явление электромагнитной индукции. Магнитный	1
	поток. Правило Ленца. Закон электромагнитной	
	индукции. Электромагнитное поле.	
7.	Практическое применение закона электромагнитной	1
	индукции.	
8.	Явление самоиндукции. Индуктивность. Энергия	1
	магнитного поля тока.	
9.	Лабораторная работа №2 «Исследование явления	1
	электромагнитной индукции»	
10.	Контрольная работа «Магнитное поле.	1
	Электромагнитная индукция»	
	Раздел 2. Колебания и волны	15
1.1	Механические колебания	3
11.	Механические колебания. Свободные колебания.	1
	Математический и пружинный маятники.	
	Превращения энергии при колебаниях. Амплитуда,	
10	период, частота, фаза колебаний.	1
12.	Вынужденные колебания, резонанс	1
13.	Лабораторная работа № 3 « Определение ускорения	1
	свободного падения при помощи маятника»	
1.4	Электромагнитные колебания	5
14.	Электромагнитные колебания.	1
15.	Колебательный контур	1
16.	Свободные электромагнитные колебания.	1

17.	Переменный ток.	1
18.	Контрольная работа «Колебания»	1
	Механические волны	3
19.	Механические волны. Поперечные и продольные	1
	волны.	
	Энергия волны.	
20.	Интерференция и дифракция волн. Звуковые	1
	продольные	
	волны. Интерференция и дифракция волн	
21.	Звуковые волны.	1
	Электромагнитные волны	4
22.	Электромагнитное поле. Электромагнитные волны.	1
23.	Вихревое электрическое поле. Свойства	1
	электромагнитных волн	
24.	Диапазоны электромагнитных излучений и их	1
	практическое применение.	
25.	Контрольная работа «Волны»	1
	Раздел 3. Оптика	13
	Световые волны. Геометрическая и волновая	11
	оптика	
26.	Геометрическая оптика. Прямолинейное	1
	распространение света. Прямолинейное	
	распространение света в однородной	
	среде.	
27.	Законы отражения и преломления света. Полное	1
	отражение.	
28.	Оптические приборы.	1
29.	Волновые свойства света. Скорость света.	1
30.	Интерференция света	1
31.	Когерентность. Дифракция света. Поляризация	1
	света.	
32.	Дисперсия света.	1
33.	Практическое применение электромагнитных	1
	излучений.	
34.	Лабораторная работа: «Определение показателя	1
	преломления среды.»	
35.	Лабораторная работа № 4 «Измерение фокусного	1
	расстояния собирающей линзы»	
36.	Лабораторная работа № 5 «Определение длины	1
	световой волны»	
	Излучение и спектры	2
37.	Виды излучений. Источники света. Спектры.	1
	Спектральный	
	анализ.	

38.	Шкала электромагнитных волн. Наблюдение	1
	спектров	3
	Раздел 4. Основы специальной теории относительности	3
39.	Постулаты СТО: инвариантность модуля скорости	1
57.	света в	1
	вакууме, принцип относительности Эйнштейна.	
40.	Связь массы и энергии свободной частицы. Энергия	1
	покоя	-
41.	Контрольная работа «Основы СТО»	1
	Раздел 5. Квантовая физика	17
	Световые кванты	5
42.	Гипотеза М. Планка о квантах.	1
43.	Фотоэффект	1
44.	Фотон.	1
45.	Уравнение А. Эйнштейна для фотоэффекта.	1
46.	Корпускулярно-волновой дуализм	1
	Атомная физика	3
47.	Планетарная модель атома.	1
48.	Объяснение линейчатого спектра водорода на	1
	основе	
	квантовых постулатов Бора.	
49.	Контрольная работа «Атомная физика»	1
	Физика атомного ядра	7
50.	Состав и строение атомного ядра.	1
51.	Дефект массы и энергия связи ядра.	1
52.	Радиоактивность.	1
53.	Виды радиоактивных превращений атомных ядер.	1
54.	Закон радиоактивного распада.	
55.	Ядерные реакции.	1
56.	Цепная реакция деления ядер. Применение ядерной	1
	энергии	
	Элементарные частицы	2
57.	Элементарные частицы.	1
58.	Фундаментальные взаимодействия.	1
	Раздел 6. Строение Вселенной	5
	Солнечная Система. Строение Вселенной	5
59.	Видимые движения небесных тел. Законы Кеплера.	1
	Солнечная система: планеты и малые тела, система	
	Земля— Луна.	
60.	Строение и эволюция Солнца и звёзд.	1
	Классификация звёзд.	
61.	Звёзды и источники их энергии.	1
62.	Галактика	1

63.	Современные представления о строении и эволюции	1
	Вселенной.	
	Раздел 7. Повторение	5
64.	Повторение «Механика»	1
65.	Повторение «Молекулярная физика и	1
	термодинамика»	
66.	Повторение «Электродинамика»	1
67.	Повторение «Квантовая физика»	1
68.	Повторение «Атомная физика и физика атомного	1
	ядра»	